波動光学の風景 多層編

本宮佳典 著

はじめに

この電子書籍は,月刊 O plus E 誌の連載チュート リアル記事「波動光学の風景」の,2008 年 8 月号から 2009 年 4 月号までに掲載された分をまとめたものであ る。多層膜の光学特性を解析する手法と,多層膜で実 現される代表的な機能について紹介する。

既刊の薄膜編で,単層膜までの基本事項について紹 介した。多層でも基本的な考え方は共通であり,境界 面の数が増えただけと見ることもできる。しかし,そ の増え方は顕著である。数層から数十層は広く実用に 供され,時に数百層にも及び,理論的には無限の繰り 返しも考察の対象となる。

その自由度の高さから,多層膜ならではの多彩な現 象が見られる。透明な膜が積層されているのに光が透 過できなかったり,そのような多層膜が少し間を置い て重ねられると今度は光が透過できたりもする。また, 波長依存性を抑制する工夫もあれば,急峻な波長特性 を目指す努力もある。興味深い現象や巧みな工夫が豊 富に見られる分野である。

こうした多様な現象を知り,それらを扱う技術や理 論を理解することは,それだけでも興味深いものであ るが,応用の観点からも大変重要である。本書では, これらの光学多層膜の解析手法として,前進波と後退 波の振幅で各層内の場を表す方法と,特性行列を用い る方法について紹介する。どちらの方法も,基底の変 換で容易に他方へ移行できるという意味で,等価なモ デルである。しかし,実際の計算では前者が,理論的 な検討では後者がやや使いやすい。そこで本書では, 両方の考え方と相互の関係についても説明した。

光学多層膜の代表的な応用例として、反射防止膜や、 多層膜反射鏡、エッジフィルター、バンドパスフィル ターなどの光学コーティングとその原理について紹介 した。また、各層の作用と多層膜全体の特性との関係 を視覚的に把握できる、アドミタンス軌跡を紹介した。 多層膜の特性の成り立ちを理解し、応用を検討する上 で参考になると思う。

光学薄膜は、20世紀前半に真空技術が進歩して以降, 急速に発展した。そして,特性の向上,波長域の拡大, 使用環境や用途の多様化などに伴って,今も発展は続 いている。実用を目指すと,光学的な特性だけでなく, 膜の機械的特性や,耐腐食性,材料コスト,成膜コス ト等のさまざまな要素も考慮した材料選択や設計が必 要になる。技術者の技量や装置に依存したノウハウな どにも及ぶ奥深い技術分野である。しかし,初歩的な 光学計算によって知見が得られ,状況が理解でき,見 通しが開けるということもしばしば経験する。過度に 尻込みする必要はないと思う。

なお,参考までに,拙作のプログラム例を紹介した。 実用目的ではなく,あくまでも本書の内容の具体的な 理解が目的であり,動作や計算結果に対して責任を負 うものではない。その旨をご理解の上,参考としてご 利用いただければ幸いである。

読者のそれぞれの興味や関心の中で,本書が何らか の形でお役に立てるならば,著者の何よりの喜びで ある。

2013年7月 本宮 佳典

- 第 37 回 39. 光学多層膜
- 第38回 40. バンドギャップ
- 第39回 41. 特性行列による多層膜の計算
- 第40回 42. 誘電体多層膜反射鏡
- 第41回 43. 二層反射防止膜
- 第42回 44. アドミタンス軌跡
- 第43回 45. アドミタンス軌跡と光学特性
- 第44回 46. 干渉フィルター
- 第45回 47. 多層膜特性の計算プログラム

単層膜から層を増やしていくと,さらに豊かな世界 が広がる。各層の材料と厚さが設計パラメーターとな り,層数と共に光学特性の設計自由度が増大する。実 際,多くの光学応用製品に,その用途に応じた光学多 層膜が使われている。

単層膜の場合の光の場や反射率,透過率について第 33章,第34章で説明したが,本章では改めて多層膜 を想定しながら基本事項を整理する。その際,s,p両偏 光でなるべく共通の扱いができるようにしておく。

図 39-1 に示したように,多層膜に角周波数 ω の平 面波が, *x*-*z* 面を入射面(入射光の進行方向と境界面の

図 39-1 多層膜と反射屈折波のモデル

法線方向で張られる面)として、入射角 θ_1 で入射した 状況を考える。時間因子は $exp(-i\omega t)$ とする。領域m中の電磁場の空間部分は、マクスウェル方程式により

$$\operatorname{rot}\boldsymbol{H}_{m} = -i\,\omega\boldsymbol{\varepsilon}_{m}\boldsymbol{E}_{m} \tag{39-1}$$

$$\operatorname{rot} \boldsymbol{E}_m = i \,\omega \mu_0 \boldsymbol{H}_m \tag{39-2}$$

$$\operatorname{div} \boldsymbol{E}_m = 0 \tag{39-3}$$

$$\operatorname{div} \boldsymbol{H}_m = 0 \tag{39-4}$$

を満たす (*m*=1,…,*N*)。式(39-2)の rot をとり,式 (39-1)を使って磁場 *H*_mを消去すると,

$$\operatorname{rot}(\operatorname{rot} \boldsymbol{E}_m) = i \,\omega \mu_0 \operatorname{rot} \boldsymbol{H}_m = \omega^2 \mu_0 \varepsilon_m \boldsymbol{E}_m = k_0^2 n_m^2 \boldsymbol{E}_m$$
(39-5)

となる。これに、ベクトル解析の公式

$$\operatorname{rot}(\operatorname{rot} E) = \operatorname{grad} \operatorname{div} E - \nabla^2 E$$
 (39-6)

および,式(39-3)を用いると,ヘルムホルツ方程式

$$\nabla^2 E_m + k_m^2 E_m = 0 \tag{39-7}$$

が得られる。ただし,

$$k_m = \omega \sqrt{\mu_0 \varepsilon_m} = k_0 n_m \tag{39-8}$$

$$k_0 = \omega \sqrt{\mu_0 \varepsilon_0} \tag{39-9}$$

$$n_m = \sqrt{\varepsilon_m/\varepsilon_0} \tag{39-10}$$

と置いた。ここで n_m は、領域mの媒質の屈折率である。吸収性のある物質では虚数成分を持つことになる。このとき、式(39-7)の解として、

第39章で多層膜に平面波が入射したときの場を求める計算手法について説明した。各層の光の場の固有モードとして前進波と後退波があることを用い,前進波の複素振幅 a_m と後退波の複素振幅 b_m によって第m層中の場を記述した。隣接する層との境界面で電場と磁場の境界面内方向成分が連続であることが必要である。この境界条件は数式的には複素振幅 a_m , b_m についての代数方程式となり,連立1次方程式を解くことで場が求まる。このように,固有モードを求め,それらを基底としてその線形結合で一般的な解を表現する手法は,線形微分方程式の解法として広く用いられる一般的な手法である。

ところで,線形空間の基底は一意的なものではなく, 別の基底によって表現することも可能である。多層光学 薄膜の設計等でよく用いられる手法として,前進波と後 退波の振幅を用いる代わりに,境界面での電場と磁場の 振幅を用いる方法がある。本章ではそれを紹介する。図

まず, s 偏光の場合, 領域 m の電場と磁場は, 前進波 と後退波を用いて,

$$\boldsymbol{E}_{m} = \begin{pmatrix} \boldsymbol{E}_{mx} \\ \boldsymbol{E}_{my} \\ \boldsymbol{E}_{mz} \end{pmatrix} = \boldsymbol{a}_{m} \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{1} \\ \boldsymbol{0} \end{pmatrix} \exp\left[i\boldsymbol{k}_{mx}\boldsymbol{x} + i\boldsymbol{k}_{mz}(\boldsymbol{z} - \boldsymbol{z}_{m-1})\right] \\ + \boldsymbol{b}_{m} \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{1} \\ \boldsymbol{0} \end{pmatrix} \exp\left[i\boldsymbol{k}_{mx}\boldsymbol{x} + i\boldsymbol{k}_{mz}(\boldsymbol{z}_{m} - \boldsymbol{z})\right]$$

$$(41-1)$$

$$\boldsymbol{H}_{m} = \begin{pmatrix} \boldsymbol{H}_{mx} \\ \boldsymbol{H}_{my} \\ \boldsymbol{H}_{mz} \end{pmatrix} = \frac{\boldsymbol{a}_{m}}{\omega \mu_{0}} \begin{pmatrix} -k_{mz} \\ \boldsymbol{0} \\ k_{1x} \end{pmatrix} \exp[ik_{mx}x + ik_{mz}(z - z_{m-1})]$$
$$+ \frac{b_{m}}{\omega \mu_{0}} \begin{pmatrix} k_{mz} \\ \boldsymbol{0} \\ k_{1x} \end{pmatrix} \exp[ik_{mx}x + ik_{mz}(z_{m} - z)]$$
(41-2)

と書くことができる[第39章の式(39-16), (39-17)参照]。 このとき,領域m+1との境界条件は, z=z_mにおいて電 場と磁場の境界面内方向成分が連続との条件から,

$$\begin{pmatrix} 1 & 0 \\ 0 & n_{mz}n_m \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \exp(i\beta_m) & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_m \\ b_m \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & n_{m+1,z}n_{m+1} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \exp(i\beta_{m+1}) \end{pmatrix} \begin{pmatrix} a_{m+1} \\ b_{m+1} \end{pmatrix}$$
(41-3)

透明な誘電体で高反射率の多層膜反射鏡を実現する ことができる。バンドギャップ(第40章参照)を構成 するような多層膜を構成すれば、光は進入することも 吸収されることもないから、全部反射するしかない。 効率的に反射鏡を構成するためには、図 42-1 のように、 高屈折率の膜と低屈折率の膜とを交互に成膜するとよ い。図中の矢印で示したように、ある境界面で反射し た光と、1層先まで進んで反射した光とが強め合う条件 だと,反射率が効率よく向上する。膜厚を膜媒質中の 波長の1/4に設定すると、往復分の光路が半波長に相 当して位相が180°遅れる。また、屈折率が大きい媒質 から小さい媒質に向かう境界面と、小さい媒質から大 きい媒質に向かう境界面とでは,反射に際しての位相 変化が180°異なる。この2つの効果から、両経路の反 射光の位相がそろい、強め合う。このような多層膜に 対して,特性行列を使って反射率を求めてみよう。

領域 m(外部領域は 0, 基板は s で表す)の, 垂直 入射光に対する特性行列を

$$\boldsymbol{M}_{m} = \begin{pmatrix} \cos \beta_{m} & -i n_{m}^{-1} \sin \beta_{m} \\ -i n_{m} \sin \beta_{m} & \cos \beta_{m} \end{pmatrix}$$
(42-1)

とすると、多層膜前後の光の場の関係は

$$\begin{pmatrix} \boldsymbol{E}_{0} \\ \boldsymbol{H}_{0}/\boldsymbol{Y}_{0} \end{pmatrix} = \boldsymbol{M}_{1}\boldsymbol{M}_{2}\cdots\boldsymbol{M}_{N} \begin{pmatrix} \boldsymbol{E}_{N} \\ \boldsymbol{H}_{N}/\boldsymbol{Y}_{0} \end{pmatrix} = \boldsymbol{M} \begin{pmatrix} \boldsymbol{E}_{s} \\ \boldsymbol{H}_{s}/\boldsymbol{Y}_{0} \end{pmatrix}$$
(42-2)

図 42-1 誘電体多層膜反射鏡

となる [第 41 章式(41–13), (41–14)参照]。ただし, E_m , H_m は電場の y 方向成分と磁場の – x 方向成分, n_m は領域 m の屈折率, $Y_0=1/(c_0\mu_0)$ は真空のアドミタンス [式(41–9)参照] とする。また, パラメーター β_m は層 厚分の位相差を表し, 真空中の波長を λ_0 とすると

$$\beta_m = k_m d_m = \frac{2\pi}{\lambda_0} n_m d_m \tag{42-3}$$

である。膜厚が $\lambda/4$ というのは $\beta_m = 2\pi \times (1/4) = \pi/2$ となるような厚さである。

なお,高屈折率で膜厚が $\lambda/4$ の層を H,低屈折率で 膜厚が $\lambda/4$ の層を L で表して,膜構造を[HLHLH]ある いは[(HL)²H]のように表したり,外部の屈折率 n_0 や基 板屈折率 n_s を付して[n_0 HLHLH n_s]と表す習慣がある。

以下では, 層数 N は奇数とする。また, 各層の厚さ は,

$$d_{m} = \frac{\lambda_{0}}{4n_{m}} = \begin{vmatrix} \lambda_{0} / \left(4n_{\mathrm{H}}\right) & (m = 1, 3, \cdots, N) \\ \lambda_{0} / \left(4n_{\mathrm{L}}\right) & (m = 2, 4, \cdots, N-1) \end{vmatrix}$$

$$(42-4)$$

前章でアドミタンス軌跡の概要を説明した。本章では いくつかの多層膜について,アドミタンス軌跡と光学特 性との関係を眺めてみる。具体例を見るとイメージを持 ちやすくなると思う。

〈多層膜反射鏡〉

図 45-1 は多層膜反射鏡 $[n_0(\text{HL})^4\text{H}n_s](n_L=1.38, n_H=2.40, n_s=1.52)$ のアドミタンス軌跡である(第 42 章で扱ったものと同じ構造)。基板屈折率 $n_s=1.52$ をア ドミタンス軌跡の起点とし,屈折率 n_H の層を厚さが4 分の1 波長になるまで積み重ねる。このとき,複素平 面上の2 点 $-n_H$ と n_H からの距離の比を一定とするア ポロニウスの円に沿って左回りに軌跡が描かれ,下半円 になる。次に屈折率 n_L の層を4 分の1 波長厚まで積み 重ねる。今度は複素平面上の2 点 $-n_L$ と n_L からの距離

図 45-1 多層膜反射鏡 $[n_0(\text{HL})^4\text{H}n_s]$ のアドミタンス軌跡 $(n_1=1.38, n_{\text{H}}=2.40, n_s=1.52)$

の比を一定とするアポロニウスの円に沿って左回りに軌 跡が描かれ、上半円の軌跡となる。同様に半円ずつの軌 跡がつながるが、次第に大きな軌跡を描き、最終的なア ドミタンス η_0 は値の大きな実数となる。そのときの振 幅反射率 r は、外部の屈折率を n_0 とすると、

$$r = \frac{n_0 - \eta_0}{n_0 + \eta_0} \tag{45-1}$$

で与えられる [第44 章式(44-18)]。すなわち,振幅反 射率は-1 に近い値になる。反射率はその絶対値の2乗 となるので1に近い値になる。

図 45-1 の軌跡をたどると分かるように、LとHの 層を増やすほど η_0 は大きくなり、反射率は1に近づく。 初期値である基板屈折率 n_s が n_H 以下であれば、アド ミタンス軌跡は同様にスパイラル状に大きくなり、反射 率は増加して1に近づくことが分かる。これに対して あまり現実的ではないかもしれないが、仮に初期値 n_s が n_H よりも大きい場合、膜が形成されるとアドミタン ス軌跡は最初は小さくなる。しかし、さらに層を重ねる と、アドミタンスは増大に転ずる。つまり最初は反射防 止膜のように作用するが、層が重なると基板材料によら ず反射鏡になる。

図 45-2 に, この計算に用いたプログラムを示す。計 算は前章の式(44-19)

に従った。層の番号は入射側、すなわち屈折率 n₀の側

波動光学の風景……•◆

表 47-2	サブルーチン mlf の入出力パラメーター
--------	-----------------------

引数	入/出	型	内容
r	出力	実数	反射率 (%)
t	出力	実数	透過率 (%)
\mathbf{pr}	出力	実数	反射光の位相(°)
pt	出力	実数	透過光の位相(°)
n	入力	複素配列	複素屈折率 $(=n+ik)$
		(寸法:nn)	
d	入力	実配列	層厚 (wlと共通の単位)
		(寸法:nn)	(d (1) = d (m) = 0.0)
m	入力	整数	領域数=層数+2
wl	入力	実数	波長 (dと共通の単位)
th	入力	実数	入射角(°)
j	入力	整数	1:s偏光, 2:p偏光
nn	入力	整数	配列n, dの寸法
			$(m \leq nn)$

コールシーケンス: call mlf (r, t, pr, pt, n, d, m, wl, th, j, nn)

位と共通であればよい。領域1とNの厚さは実際には 無限大だが、プログラムでは0を入れる。

サブルーチンの入出力パラメーターを表 47-2 に示 す。また、サブルーチンのソースコードを図 47-3 に示 す。対象となる多層膜の領域数は配列の寸法により制約 されるが、整合寸法としていてメインプログラムで任意 の寸法を宣言できるので、実質的な制約は計算機の能力 で決まる。各領域の媒質の光学定数や層の厚さを配列に 格納してサブルーチンを呼ぶが、それ以外の配列は使用 していない。したがって、作業領域を確保するための配 列をメインプログラムで用意する必要はない。

計算結果を図 **47-4** に示す。プログラムは自宅の Windows パソコンで作成し, Cygwin²⁾の g77 でコン パイルし実行した。各行頭の文字 s, p は偏光を示す。 各列は左から,反射率(%),透過率(%),反射光の位 相(°),透過光の位相(°)を表す。

このプログラム例と比較すると、市販のツールはプ ログラム規模がかなり大きい。これは、もちろん機能 や性能が優れているためである。例えば、代表的な基 板材料や膜材料のデータベースを持っていたり、代表 的な層構造のデータベースを持っていたり、複雑なモ デルを設定しやすいヒューマンインターフェースを持 っていたり、自動設計機能を持っていたり、光学設計 ツールとデータを共有できたり、入力の妥当性をチェ ックする機能を持っていたりする。内部処理の詳細は 不明だが、精度や速度や使用メモリー量などの観点か ら、条件によって処理を変えていることも推測される。

本章で紹介したプログラムにはそうした配慮が十分

```
subroutine mlf(r, t, pr, pt, n, d, m, wl, th, j, nn)
implicit double precision(a-h, o-z)
complex*16 n, um, zm, a, q, z, b1, b2, f1, f2, u1, u2
dimension n(nn), d(nn)
data pi /3.141592653589793238462643383279/
f2=0
a =1
do i=m, 1, -1
  z = sqrt(1 - (sin(th*pi/180)*n(1)/n(i))**2)
  u_{1=z*n(i)} ** (3-2*i)
  b1 = exp((0., 2.) * pi * n(i) * z * d(i) / w1)
  if (i.eq.m) then
    um=u1
    zm=z
  else
    q = (u1-u2) / (u1+u2)
    f1=b1*(q+f2*b2)/(1+q*f2*b2)
    a = a * (b1+f1) / (1+f2*b2)
    f2=f1
  endif
  u2=u1
  b2=b1
enddo
r =abs(f1)**2*100
t =abs(a) **2*dble(um)/dble(u1)*100
pr=atan2(-imag(f1), dble(f1))*180/pi
q = a * (zm * n(1) / (n(m) * z)) * * (j-1)
pt=atan2(-imag(q), dble(q))*180/pi
return
end
```

図 47-3 多層膜計算用のサブルーチンプログラム例 (FORTRAN77)

s p	37. 1472 26. 1427	$3.4590 \\ 3.8856$	140. 0421 -52. 5815	-106. 4324 -110. 4992	

図 47-4 多層膜計算の出力例

ではないので、実用に供するのには必ずしも適当では ない。しかしながら規模が小さいことから、理論と数 式とプログラムの対応関係は見やすいと思う。プログ ラミングの過程は、単なるツール作成作業としての意 味にとどまるものではない。光の場の振幅を定めるた めに必要な、情報と処理手順が明らかになる。理論や 数式の導出が一通り理解できるようになったレベルか ら、現象の理解がもう一歩進むように思う。できれば 独力で挑戦するのが理想だが、敷居を高く感じる方は 本稿を参考にしていただきたい。

参考文献

- $1) \ http://ece-www.colorado.edu/~bart/book/ellipstb.htm$
- 2) http://cygwin.com/
- ※ Cygwin は, Red Hat Inc.の商標または登録商標です。
- ※ Windows は、米国 Microsoft Corporation の米国およびその 他の国における登録商標です。

■ 事項

	頁	カラム	行		頁	カラム	行
アドミタンス	28	左	14	多層膜反射鏡	19	左	1
アドミタンス軌跡	28	左	3	多層膜反射鏡	34	左	5
アポロニウスの円	31	右	1	単層反射防止膜	35	右	4
アポロニウスの円	34	左	11	短波長通過	38	左	16
色ガラス	38	左	9	長波長通過	38	左	16
エタロン	39	右	下4	透過率	5	左	10
エッジフィルター	38	左	下 10	等反射率曲線	37	左	8
円弧	30	右	下 8	特性行列	14	右	下 10
干渉フィルター	38	左	11	特性方程式	22	左	5
基板屈折率	29	右	9	特性マトリックス	14	右	下 10
狭带域通過	39	右	下7	2層反射防止膜	35	左	13
金属ナノコロイド	38	左	10	8分の1波長層	39	左	4
金属膜	36	左	下 5	反射防止膜	24	左	1
光学多層膜	1	左	4	反射率	5	左	8
固有值	22	左	5	バンド	12	右	2
コンパイル	48	左	13	バンドギャップ	8	右	11
遮断波長	39	右	3	バンドギャップ	12	右	5
真空のアドミタンス	14	左	下 8	半波長膜	35	右	3
真空のアドミタンス	29	左	下 10	ファブリー・ペロー	39	右	下 6
真空のインピーダンス	29	左	下 10	ファブリー・ペロー型フィルター	41	右	5
振幅透過率	4	左	下 6	フォトニッククリスタル	9	左	6
振幅透過率	16	右	8	フォトニック結晶	8	右	下 19
振幅反射率	4	左	下 6	フォトニックバンドギャップ	8	右	下 16
振幅反射率	16	右	8	プログラム	44	左	4
带域通過	38	左	17				

人	名		

	頁	カラム	行
Apollonius	33	人物	1
Bragg, Henry	23	人物	1
Bragg, Lawrence	23	人物	17
Eukleides	33	人物	9
Fabry	39	右	下 5
Perot	39	右	下 5
Yablonovitch	9	左	8
大高一雄	9	右	2

著者略歴 本宮佳典(ほんぐう・よしのり), Yoshinori Hongu

1956年 神奈川県藤沢市生まれ 1975年 神奈川県立湘南高等学校卒業 1979年 東京大学理学部物理学科卒業 1984年 東京大学大学院理学系研究科物理学専攻博士課程修了 理学博士 同年,株式会社東芝入社 光応用機器の研究開発に従事 2012年 東芝リサーチ・コンサルティング株式会社 シニアフェロー 2018年 株式会社東芝 研究開発センター (2021.10退職) 法政大学理工学部 (兼任講師) (2018.4~)

第20回(2019年度)応用物理学会業績賞(教育業績)受賞

「波動光学の風景」の情報は以下のURLで公開しています。https://www.adcom-media.co.jp/opluse/wave/

波動光学の風景 多層編

		2013年7月25日初版発行
		2023年2月1日第2版発行
著 者	本 宮 佳 典	
発行者	喜 多 野乃子	
発行所	アドコム・メディア株式	会社
	〒169-0073	東京都新宿区百人町2-21-27
		電話 (03)3367-0571(代)

Advanced Communication Media Co. Ltd., Tokyo, Japan, 2013 ISBN 978-4-910636-13-9 C3042 ¥3300E © Yoshinori Hongu 2013 印刷/製本(㈱ブックフロント Printed in Japan

・本書に掲載する著作物の複製権・翻訳権・上映権・譲渡権・公衆送信権
 (送信可能化権を含む)はアドコム・メディア㈱が保有します。

・ **JCOPY** <出版者著作権管理機構 委託出版物>

本書の無断複製は著作権法上での例外を除き禁じられています。複製される場合は、そのつど事前に、

出版者著作権管理機構(電話 03-5244-5088, FAX 03-5244-5089, E-mail info@jcopy.or.jp)の 許諾を得てください。